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Abstract — The progressive electrification of urban distribution 

fleets, motivated by the consolidation of electric vehicle technology 

and by the mobility advantages that cities grant to non-polluting 

vehicles, poses future challenges that affect electrical distribution 

networks. This paper simulates the main last mile distribution 

models that can be adopted in a mega-city such as Madrid. In 

particular, the impact of carrying out the full load of the last mile 

distribution by means of electric vehicles is analyzed. Two 

fundamental aspects are studied, the efficiency of the different 

routes developed by each transport vehicle and the impact that 

these routes have in the electrical distribution network. For this 

purpose, an intelligent route planner, capable of optimizing the 

distribution of the load among the number of vehicles available in 

each postal service hub (PSH), is combined with a Reference 

Network Model that designs and expands the distribution network 

to supply consumers and electric vehicles. Several scenarios in 

terms of location and segmentation of postal service hubs are 

analyzed. From this analysis, it is concluded that reinforcements 

on the distribution network are avoided if the operation is 

decentralized (using fourteen PSHs), since a centralized operation 

(a single PSH) would require longer routes with higher energy 

consumption. Moreover, decentralized operation would enhance 

de emissions reduction achieved by electrifying the fleet, since the 

estimated absolute emissions of the electrified fleet for a 

decentralized scenario are up to 50% lower compared to a 

centralized one. Finally, the results reveal that smart charging 

strategies also contribute to lessen the incremental costs in the 

distribution network, in addition to significantly reducing the cost 

of energy supply. 

  

Index Terms — Electric vehicle charging, power distribution 

networks, vehicle routing problem, last mile distribution 

I.  INTRODUCTION 

The prolonged increase in electronic commerce over the last 

decade has led to profound changes not only in commerce, but 

also in the logistics and transport sectors [1]. According to a 

study of the Spanish National Observatory of 

Telecommunications and the Society of Information (ONTSI) 

[2], in 2017 more than 31,000 million euros were invoiced in 

online commerce in Spain, of which 40% will consist of 

products that require logistics and transport. Limiting these data 

to the case study analyzed in this paper, in the city of Madrid 

more than 100,000 parcel shipments are made on average every 
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day [3]. In view of these facts, the need to focus efforts in 

improving the operation and sustainability of the postal delivery 

services and, more specifically, the optimization of parcel 

transport routes, as well as the evaluation of its impact into the 

system, are needed.  

Route planning is one of the most studied fields inside the 

artificial intelligence and optimization. Problems arisen in this 

field can be divided into two main groups: the first category of 

problems are usually known as multi-point routing problems, 

being the most well-known the vehicle routing problem (VRP) 

[4] and the traveling salesman problem (TSP) [5]. These 

problems belong to the field of combinatorial optimization. The 

second category are the point-to-point route planning problems 

[6], in which the main objective is to find the shortest path 

between two different points within a graph. 

A common approach to optimize the routing of electric vehicles 

is an extension of the shortest path problem which seeks to find 

the most economical route [7]. This may be accomplished by 

adding constraints to the VRP algorithm that model battery 

capacity and charging times [8]. In addition to the optimal route, 

these models also compute the charging time at public charging 

stations and depot [9]. In [8], the charging price is considered as 

a constant parameter that depends on time, assigning a different 

cost to the electricity consumed in each of the 3 periods 

considered (peak, flat and valley). 

Alternatively, an iterative approach to determine the least cost 

route in interdependent power and transportation networks is 

proposed by [10]. First, a dynamic route optimization algorithm 

is used to find the optimal routes and the charging profiles at 

each spot. Then, a power flow is used to calculate the nodal 

prices given the expected demand previously obtained from the 

transportation network optimization. Finally, the electricity 

prices for each charging station are updated for the next iteration 

of the routing algorithm.  

Although the aforementioned works consider the costs of 

charging installation and the electricity consumed, they do not 

provide an analysis of the impact of the electrification of 

parcels’ fleet on electricity distribution networks. Various 

works have analyzed the challenge of the integration of electric 

vehicles on small-scale distribution networks [11, 12, 13], but 



they do not focus specifically in the electrification of fleets of 

freight transportation. 

In [14], it is proposed a coupled transportation and power 

distribution system model, where the transportation model 

interacts with an Optimal Power Flow in the distribution 

network, interchanging information about traffic flow and 

electricity price. In [14], the electricity distribution network is 

analyzed from the point of view of its operation. In [15], the 

expansion planning model for distribution systems in the 

context of plug-in electric vehicles is analyzed. However, that 

paper that does analyze specifically the delivery of parcels and 

misses a transportation model. In [16, 17, 18] a joint 

optimization of distribution networks and electric vehicles is 

proposed. Moreover, [19] proposes a methodology to jointly 

optimize multi-energy transportation systems, incorporating 

transportation, natural gas and active distribution networks. 

Despite a joint optimization is interesting and could bring 

benefits for the system, it does not mimic the actual behavior of 

customers, that first take a decision in their investments and 

operation, having this kind of decisions later an impact into the 

system. A different approach that employs a large-scale 

distribution network planning model to assess the required 

network reinforcements for different levels of electric vehicle 

penetration was presented in [20], but not targeting specifically 

the delivery of parcels, and missing the coupling with a 

transportation model.  

Other authors use generally mathematical models [14, 16, 17, 

18], thus limiting the realism and the scale of the distribution 

systems that can be analyzed. In the state of the art, there are 

publications analyzing the impact of electric vehicles into the 

distribution system [11, 12, 13, 14, 15, 16, 17, 18, 19], but there 

is a lack of such analysis focused in the impact on the electricity 

distribution network due to the electrification of fleets of freight 

transportation. Such analysis requires a realistic model of the 

distribution network around each charging hub. It is also needed 

to simulate the routes of electric vehicles to model the 

transportation company and the traffic flows, in order to 

adequately simulate different options, and estimate the energy 

requirements of the electric vehicles, since this is a requirement 

to be able to evaluate their impact into the system.  

This paper contributes to the state of the art by proposing a 

methodology to assess the impact of electric vehicles, by 

combining for the first time two models, a route optimization 

model (ROM) and a Reference Network Model (RNM). This 

approach enables to optimize the routes of the electric vehicles 

and assess their energy requirements and their impact on the 

electricity distribution networks. The use of Reference Network 

Models, allows realistically modeling distribution systems [21, 

22], covering all the voltage levels, and enabling to analyze 

medium or large-scale system, covering all the distribution 

network around each charging hub. Opposed to other papers that 

analyze electric vehicles generically, this methodology is 

applied in this paper, to specifically assess the impact of the 

electrification of the delivery of parcels, which has nowadays a 

renewed interest. Moreover, the methodology proposed in this 

paper mimics (for a proper assessment) the behavior of the 

agents, considering that transportation companies first take 

decisions on their investments and operations, which later have 

an impact in the overall system. Besides, the assessment of the 

impact in the distribution network, is part of a more complete 

evaluation that also considers, among others, the reduction of 

emissions and the cost of energy supply. In term of results, the 

paper provides real transport routes over estimated workload for 

last mile delivery in the city of Madrid, allowing to analyze and 

compare, among others, different strategies for the 

transportation company (e.g. concentrated vs distributed 

charging hubs). 

Section II presents the transport of parcel context of the 

problem. In section III, the methodology is presented, 

describing a decision-making multi-criteria optimization that 

combines two models to analyze route planning and electricity 

distribution network modelling. Section IV describes the case 

study and section V presents the results. Finally, section VI 

summarizes the main conclusions. 

II.  CONTEXT 

Before advancing the methodology for the modelling of both 

previous depicted stages, it is necessary to delimit the postal 

delivery services operation and its problematic, more 

specifically in the so-called Postal Service Hubs (PSH), and 

what their fundamental characteristics are.  

One of the crucial missions of a PSH is the delivery of urgent 

parcel service and high value-added shipments. To guarantee 

the fulfillment of the deadlines in the delivery, each unit may 

have established several work shifts. Each work shift is assigned 

an PSH boss and a set of postmen. Furthermore, each PSH is 

assigned a zone of influence, which is given by a series of postal 

codes, to facilitate the separation of shipments according to their 

destination and distribution area. In turn, special service units 

are divided into sections that correspond to a certain 

geographical area or a group of previously established streets. 

The sections can be divided into distribution zones, whose 

number and size are given by the workload and the number of 

postmen available. A distribution zone usually corresponds to a 

specific postman. 

From the point of view of the optimization of the delivery 

service that is carried out in the PSH , the main operation can be 

abstracted in two stages that are carried out in each of the work 

shifts: assignment and prioritization (A&P) of shipments, for a 

side, and route layout definition (RLD), by another. 

- Assignment and prioritization of shipments: this stage of the 

operation is carried out by the head of the PSH and the objective 

is double. On the one hand, determine what packages each 

postman has to deliver; and on the other, estimate if the 

workload of the postman is greater than the one that can be 

delivered during his shift, and if so, determine which shipments 

are discarded to be delivered in the next turn. This process of 

assignment, prioritization and distribution of cargo requires a 

deep knowledge of the operation and the areas of distribution of 

each PSH by their boss. This presents problems for the operation 

of the services when it must be absent for vacations, medical 

leave, etc. 

- Route layout definition: this stage of the operation is 

performed by the postmen based on their knowledge of the 

section or area of distribution in which they work and consists 

in determining the order in which they have to deliver or collect 



the shipments assigned to them. This process is done manually 

and requires a good knowledge of the distribution area, so it 

usually presents many problems when the postmen are 

inexperienced or do not know their distribution area. 

One of the objectives of the system described in this paper is 

precisely the automation and optimization of these two stages 

of face, on the one hand, to avoid the problems that are 

mentioned of dependence on expert knowledge by the head of 

the PSH and the postmen, and on the other hand, to make the 

operation more efficient by reducing the time needed for the 

allocation and packing of shipments, to improve the load 

balancing between postmen and to reduce the distance travelled 

by the postmen in their delivery routes (or even reduce the 

number of routes). 

The characteristics of operation and location of PSH is 

considered in this paper to build the scenarios used to analyze 

the impact of the electrification of their fleets, considering in a 

multicriteria optimization: CO2 emissions reduction, energy 

supply costs, investments in charging infrastructure and 

incremental costs of distribution networks along with routing 

parameters. The following section describes how to optimize 

this operation from a formal point of view so that the application 

of optimization methods is possible. 

III.  METHODOLOGY 

A.  Aggregated decision-making multicriteria optimization 

Other authors use combined optimization models, where the 

decisions of the agents are decided together with the 

investments in the electricity distribution networks [16, 17, 18]. 

Opposed to that approach, we use a two-level approach, where 

first the transportation companies take a decision on their own 

investments and operation (e.g. number and location of PSHs, 

number of electric vehicles, route planning,…), and then that 

decisions have an impact in the system. A conceptual diagram 

of the proposed methodology to assess the impact of electric 

vehicles is provided in Fig. 1. 

 

Fig. 1. Conceptual diagram of the proposed methodology 

This approach mimics the actual decisions, where Distribution 

System Operators (DSOs) cannot control their customers’ 

investments and operations. However, as shown in the results 

section, these decisions later have an impact in the 

reinforcement level of electricity distribution networks that 

DSOs must plan and operate. With this solution we provide an 

accurate calculation of actual investments, where agents first 

decide upon the investment and operation of their installations, 

and afterwards the impact of these decisions in the electricity 

distribution networks is assessed. 

In the provided methodology, the daily operation of the parcel 

delivery company is first modelled using a route optimization 

model (ROM) taking as an input the position and number of 

PSHs and the amount of daily shipments per turn of distribution. 

The average energy consumption per vehicle and time windows 

in which they are available for charging at the PSH, obtained 

with the ROM, are then used by a Reference Network Model 

(RNM) [23]. First, a greenfield RNM (GRNM) is used to obtain 

a model of the electricity distribution network in the area of 

interest around each PSH. Then, a brownfield RNM (BRNM) is 

applied to expand the electricity distribution networks (DN), 

taking into account the new electric vehicles and their load 

profile. These profiles also have an impact in the cost of energy 

and in the required charging infrastructure depending 

respectively on time and power at which the recharge is 

performed. The connection between the two models is achieved 

by using the VRP output data on the energy consumption and 

the returning time to the depot as input data to the RNM. The 

data flow between the different components of the framework 

is better exposed in Fig. 2. 

 
Fig. 2. Data flow of the proposed methodology 

A combination of routing, environmental, electrical, and 

economic parameters is used to analyze scalability and 

replicability as well as to perform a multicriteria optimization 

considering the different stakeholders involved. In the case of 

electrification of fleets of freight transportation, usually freight 

companies are the ones investing in developing their own 

charging infrastructure, so not only the energy price but the cost 

of infrastructure needs to be considered. Moreover, from the 

point of view of the system, the additional cost of possible 

network reinforcements required by DSOs should also be 

studied because they are socialized in the fixed term of the 

electricity tariff. 

B.  Route Optimization Model 

In addition to the basic versions of the TSP and VRP, in the 

literature you can find many variants of them. One of these 

variants is the well-known VRP with windows of time, in which 



each client imposes a window of time in which it must be visited 

by the vehicle [24]. Another well-known example is the 

heterogeneous VRP, in which the vehicle fleet is composed of 

mobile units of different kinds and, therefore, different cost of 

use [25]. The optimization of the delivery service stages 

described in Section II can be modelled using a new variant of 

the previous methods in which customers can order pickups and 

deliveries at the same time, with fixed time windows and 

heterogeneous fleet.  

This variant of the VRP is called Vehicle Routing Problem with 

Simultaneous Pick-up and Delivery or VRP_SPD. Since this 

problem is a generalization of the classic VRP of collection and 

delivery, we can model both simultaneous pick-up and 

deliveries, or well, separate pick-up and delivery. The 

formulation described here was proposed by A. Tang Mountane 

et al. [26] and it is given in the next way: 

 

Notation: 

V set of clients 

V0 set of clients plus depot (client 0): V0 = V ∪ {0} 

n total number of clients: n = |V | 

cij distance between clients i and j 

pj pick-up demand of client j, j = 1, . . . , n 

dj delivery demand of client j, j = 1, . . . , n 

𝑄 vehicle capacity 

MD maximum distance allowed for any route k 

𝑘̃ maximum number of vehicles 

 

Decision variables: 

𝑥𝑖𝑗
𝑘 = {

1, if arc(𝑖, 𝑗)belongs to the route operated by vehicle 𝑘
0, otherwise

 

yij demand picked-up in clients routed up to node i (including 

node i) and transported in arc (i, j ) 

zij demand to be delivered to clients routed after node i and 

transported in arc (i, j ) 

 
Objective function: 
The corresponding mathematical formulation is given by: 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

𝑛

𝑗=0

𝑛

𝑖=0

𝑘̃

𝑘=1

 (1) 

 

Subject to: 
 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘̃

𝑘=1

𝑛

𝑖=0

= 1, 𝑗 = 1 … 𝑛 (2) 
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∑ 𝑥𝑖𝑗
𝑘

𝑛

𝑖=0
− ∑ 𝑥𝑗𝑖

𝑘
𝑛

𝑖=0
= 0, 𝑗 = 0 … 𝑛, 𝑘 = 0 … 𝑘̃ (3) 

∑ 𝑥
0𝑗
𝑘

𝑛

𝑗=1
≤ 1, 𝑘 = 1 … 𝑘̃ (4) 

∑ ∑ 𝑥𝑖𝑗
𝜅 𝑐𝑖𝑗

𝑛

𝑗=0

𝑛

𝑖=0

≤ 𝑀𝐷, 𝑘 = 1 … 𝑘̃ (5) 

∑ 𝑦𝑗𝑖
𝑛

𝑖=0
− ∑ 𝑦𝑖𝑗

𝑛

𝑖=0
= 𝑝𝑗 , ∀𝑗 ≠ 0 (6) 

∑ 𝑧𝑗𝑖
𝑛

𝑖=0
− ∑ 𝑧𝑖𝑗

𝑛

𝑖=0
= 𝑑𝑗 , ∀𝑗 ≠ 0 (7) 

𝑦𝑖𝑗 + 𝑧𝑖𝑗 ≤ 𝑄 ∑ 𝑥𝑖𝑗
𝑘

𝑘̃

𝑘=1
, 𝑖, 𝑗 = 0 … 𝑛 (8) 

𝑥𝑖𝑗
𝑘 ∈ {0,1}, 𝑖, 𝑗 = 0 … 𝑛, 𝑘 = 0 … 𝑘̃ (9) 

𝑦𝑖𝑗 ≥ 0,   𝑖, 𝑗 = 0 … 𝑛 (10) 

𝑧𝑖𝑗 ≥ 0,   𝑖, 𝑗 = 0 … 𝑛 (11) 

The objective function aims to minimize the total distance 

travelled. (2) ensures that each customer is visited by only one 

vehicle; and (3) ensures that the same vehicle arrives and leaves 

each customer it serves. On the other hand, (4) limits the number 

of vehicles to 𝑘̅; and (5) sets the maximum distance to cover. (6) 

and (7) define that the pick-up and delivery demands are met for 

each customer, respectively. 

The purpose of (8) is to ensure that collection and delivery 

demands are only transported using the arcs included in the 

solution; furthermore, they impose an upper limit on the total 

load carried by a vehicle in any section of the route. Finally, 

constraints (9) - (11) define the nature of the decision variables. 

More broadly, the limitations of the problem ensure that each 

vehicle leaves the depot with a volume equal to the sum of the 

customer's delivery demands on the route served by that vehicle, 

that each vehicle returns to the depot with a volume equal to the 

sum of the customer's collection demands on the same route, 

and that capacity and maximum distance restrictions are not 

violated. 

To develop this part of the system we used as basis the Vehicle 

Routing Problem service from ArcGIS on-line4. This is a service 

based on high-performance techniques for vehicle route 

optimization problems, highly adaptable to different variants 

and environments. The main reasons that motivated us to base 

the development of the delivery route optimization system on 

this service are the necessity for high scalability, fast 

prototyping and shorter development time, facilitating the 

testing of different scenarios while focusing on higher level user 

requirements. Fig. 3. shows a more specific scheme of the 

proposed route optimization model (ROM), including the VRP 

service and the modules comprising the off-line route 

optimization system. 



 
Fig. 3. Functional scheme of the route optimization model. 

As can be seen in the diagram, the designed system has several 

successive functional modules for off-line information 

collection, analysis and transformation, so that, once it has been 

modeled according to the characteristics of the problem, it 

becomes part of the input data for the VRP service. The 

functionalities of these modules are described below: 

The workload balance module is in charge of calculating some 

parameters that make the VRP service balance the workload 

among postmen. In this sense, the workload balance done by the 

VRP service is based on the volume and location of the current 

demand with the only purpose of minimizing the total distance 

travelled while fulfilling the different constraints. However, this 

form of distributing the workload can also lead to important 

variances among the workload of the postmen specially in 

working shifts with a low and geographical concentrated 

demand. To avoid these inefficiencies in terms of equity among 

workers, a mechanism to distribute the workload of the postmen 

more uniformly while increasing as less as possible the total 

travelled distance has been deployed.  

The constraint handler module calculates the values that set the 

main constraints of the VRP service. Although some of them 

have been already depicted with some of the attributes of the 

input and outputs parameters, we aim at emphasizing and 

clarifying how these important constraints are modelled. These 

descriptions are given below: 

- Time window constraints: established by some especial 

services (urgent parcels, 24h delivery, etc.) or some contracts 

with specific clients (mailing for bank offices, etc.) where the 

parcels must be picked-up or delivered in a specific time frame.  

- PSH opening and closing hour constraints: the opening and 

closing hour restrictions that impose the facilities, that in this 

case it is the PSH. This restriction it is also by the ArgGIS VRP 

service which allows defining the opening and closing hours of 

the depot, which corresponds to the PSH in our particular case, 

through the attributes. 

- Work shift start, end, duration, and workload: restrictions 

related to the workforce also play a pivotal role in the operations 

of the PSH. In this regard, the most important aspects are the 

starting and ending hours of the working shift, duration of the 

workday and the maximum workload allowed for a postman. 

- Vehicle capacities: related to the capacity of the vehicles in 

terms of weight and volume. In this case, the input parameter 

involved in the VRP configuration is also routes and the 

attribute is capacities, where the maximum weight and volume 

units are established. 

The parcel prioritization module which computes and estimate 

the priority of each parcel. There are important clients for which 

it is very important to maintain certain levels of quality in the 

compliance of pick-up and delivery times of the shipments (e-

commerce, bank offices, clinics, etc.) For this reason, 

prioritization of parcels is a key issue to model and handle in the 

postal delivery operation in order to ensure that that those 

parcels with a sooner delivery deadline and with a high priority 

are those shipments that are distributed in the current shift in 

case it is not possible to distribute all available parcels in the 

current shift. Four priority levels have been deployed with four 

different values for the revenue attribute whose difference was 

given in various orders of magnitude. 

The service time estimation module that estimates the service 

time for each parcel according to its geolocation and historical 

information. The ISMS collects everyday thousands of records 

about the time at which almost every parcel is collected or 

delivered by a postman. Taking into account that the address of 

many of these parcels is also registered, we have available high 

volumes of information about where and when the shipments 

are distributed, to which we can add other data as the type of 

service or parcel, working shift, etc. This information provides 

great value to estimate the service time. To this end, Fig. 4. show 

a schema of the different stages that take place along the 

delivery routes. 

Fig. 4. Schema of different stages and main milestones in delivery routes. 



The input data module gathers and integrate data from the 

former modules and the database to produce all input data and 

configuration required by the VRP service to execute.  

Similarly, the output data module translates the information 

provided by the VRP service and stores it in the database 

allowing to be used by the reference network models, as 

described below.  

C.  Reference Network Models 

A large-scale distribution planning model is used to model the 

distribution grids and assess the impact of the electrification of 

the delivery of parcels in several scenarios. This model, known 

as Reference Network Model (RNM), was introduced in [23], 

[27]. The RNM aims to design the optimal distribution network 

by combining planning algorithms with a geographic 

information system (GIS) to minimize the cost of the electricity 

distribution networks. The objective function comprehends 

onetime investments along with the present value of 

maintenance costs and energy losses throughout the lifespan of 

the network. The RNM’s architecture is structured into four 

layers: i) the logical layer defines the basic structure of the 

network, such as graphs comprised of nodes and branches, and 

executes several algorithms, for example to obtain a minimum 

spanning tree; ii) the topological layer contains, within the GIS, 

the necessary data and algorithms to optimally locate the 

geospatial coordinates of the network components following the 

layout of street maps, which act as a geographic constraint; iii) 

the electrical layer implements power flow and planning 

algorithms and defines  the electrical attributes of the 

equipment; and iv) the quality of supply layer, which evaluates 

and improves system reliability. 

The inputs to the RNM are consumers’ location and load profile, 

street maps, a catalog of standardized equipment (feeders, 

substations, distribution transformers, etc.) and a set of general 

configuration parameters. Then, the model optimally selects 

from the catalogue of equipment all the necessary components 

to supply consumers and connect distributed generation at a 

minimum cost, while complying with quality and reliability 

requirements of power supply. This process follows a bottom-

up approach, summarized in the flowchart in Fig. 5. starting 

from the low voltage consumers. First, the supply sources 

(transformers and substations) are located and sized at every 

voltage level. For this purpose, we use a minimum spanning tree 

algorithm that identifies nearby consumers and remove some 

branches to select which ones can be supplied from the same 

substation [22]. Then, power lines are planned to supply all 

loads from these sources while complying with the geographical 

restrictions posed by street maps, as well as electrical 

constraints (voltage and thermal limits) and reliability 

constraints. In order to plan the power lines, we start with an 

initial configuration. This initial configuration is a minimum 

spanning tree in the greenfield RNM. This network 

configuration is the minimum length graph that connects all 

consumers to the substation but has the problem of not 

necessarily being technically feasible in terms of congestions 

and voltage issues. In brownfield RNN, there is already an 

initial network which is feasible. This model starts analyzing a 

configuration where all the new consumers are directly 

connected to the substation. This configuration is verified to be 

feasible but is usually too expensive. We improve these initial 

configurations by applying branch-exchange to make them 

technically feasible (in greenfield RNM), and to reduce their 

cost (in brownfield RNM) [28]. 

In addition to a detailed cost record by type of component and 

voltage level, the results include a complete report of both 

technical and economic parameters for all designated network 

components. Moreover, it provides geospatial data of all these 

network components that has been later used in section IV to 

create graphical representations of the grids. 

 

 
Fig. 5. Reference Network Model flowchart. 

First, the actual networks are built from scratch using a 

greenfield RNM for an area around each of the 14 studied PSHs. 

These initial networks are then considered in the brownfield 

RNM as the reference to quantify the costs of the required 

network reinforcements and incremental energy losses to 

accommodate the new electric vehicles. This methodology, 

applied to analyze the impact on distribution grids of different 

penetration levels of distributed generation [29] and electric 

vehicles [20], [30], has been adapted to study the future 

electrification of parcels’ fleets, by combining it with a route 

optimization model. 

The greenfield RNM generates from scratch an optimally 

adapted network to supply the existent loads while meeting 

technical requirements such as voltage drop, thermal 

constraints, and reliability. These models minimize DSOs 

investments and operational costs when connecting network 

users (consumers, electric vehicles, and distributed generation). 

The greenfield RNM has already been applied to build European 

representative networks in [21].These models enable to model 

large-scale networks, making the analysis and the results more 

robust and replicable because they are less dependent of 

particular conditions of an individual feeder.  

Once the initial distribution networks have been modelled, they 

are expanded to analyze the different scenarios by adding the



Table 1. Generated routes results applying the ROM in each of the proposed scenarios. 

new charging spots. A brownfield RNM is used to plan 

distribution network reinforcements with minimal investments, 

maintenance and incremental energy losses to accommodate the 

new electric vehicles. All the newly added electric vehicles are 

connected to the same charging hub, where the delivery of 

parcels starts.  For every area of interest, several power flows 

scenarios are analyzed with different number of electric 

vehicles, charging power and profiles (peak and valley).  

Finally, the impact on the distribution network is assessed by 

calculating the expansion network cost in each scenario. 

IV.  CASE STUDIES 

In order to evaluate the real impact of electrification in the 

parcel delivery processes, we wanted to establish as a general 

case study an approximation as close as possible to the actual 

delivery operation that is carried out daily in the city of Madrid. 

For this, and considering public and statistical data, the position 

of the PSH and the number of daily shipments per turn of 

distribution have been established. 

These data correspond to a total of 25,000 packages to be 

delivered per 8-hour shift (1h reserved for loading/unloading 

and rest), which are normally served from 14 postal service 

hubs. To do this, nearly 500 delivery vehicles are used (35 on 

average per PSH) with a maximum load of 50 packages each. 

A.  Scenarios 

In this case study the activity of a major logistic company in 

Madrid is simulated. Considering the scalability and 

replicability of the case study, different scenarios have been 

defined to perform a sensitivity analysis on several parameters: 

- Level of dispersion:  

o Scenario 1: decentralized operation with 35 

vehicles in each of the 14 PSHs. 

o Scenario 2: semi-decentralized operation 

considering 5 PSHs, each with 100 vehicles. 

o  Scenario 3a: centralized operation of all the 500 

vehicles in a single PSH located in a suburban 

industrial area, corresponding to PSH 2.  

o Scenario 3b: centralized operation of all the 500 

vehicles in a single PSH located in a residential 

area in the city center, corresponding to PSH 1.   

- Level of penetration: the addition of 35, 100 and 500 

electric vehicles are analyzed for the distribution networks 

of PSHs 1 and 2. 

- Location in industrial or residential areas that have different 

load curves due to the different ratio between low and 

medium voltage consumers. Both types of consumers have 

different load profiles, so the aggregate demand of the 

existing consumers is different in both cases and the peak 

is reached at different moments of the day.  

- Charging patterns:  

o Peak: starting at 10p.m., when the vehicles arrive 

at the PSH. This time frame coincides with the 

evening peak of electricity consumption.  

o Valley: smart charging to fill in the valley (2-6 

a.m.). 

- Charging power:  

o Slow charging: 3.7 kW 

o Quick charging: 22 kW  

o Fast charging: 50 kW. 

In accordance with these scenarios, the input parameters 

introduced in the route optimization model described in section 

III.B are shown below: 

- Orders: the destinations the routes should visit. An order can 

represent a delivery, a pick-up or a simultaneous pick-

up/delivery. The main features of an order are geometry 

(coordinates), service time, delivery quantities, revenue, and 

time window (time in which the parcel must be delivered). 

For the simulation of all the scenarios, which represent the 

real load of parcels in the city of Madrid for one shift, 25,000 

orders have been loaded with different locations, priority 

 Scenario 1 (14 PSH) Scenario 2 (5 PSH) Scenario 3a (outskirts) Scenario 3b (center) 

Number of routes 490 500 495 495 

Minimum distance 6.043 km 8.201 km 5.625 km 9.206 km 

Maximum distance 94.947 km 81.668 km 76.606 km 62.196 km 

Total distance 9554.517 km 11216.081 km 19736.054 km 13760.627 km 

Average distance 19.499 km 22.432 km 39.871 km 27.799 km 

Minimum time 7h 0m 30s 7h 0m 49s 7h 0m 32s 7h 1m 3s 

Maximum time 7h 9m 56s 7h 9m 59s 7h 9m 58s 7h 9m 59s 

Total time 3484h 53m 0s 3551h 41m 0s 3517h 13m 0s 3518h 52m 0s 

Average time 7h 6m 0s 7h 6m 0s 7h 6m 0s 7h 6m 0s 

Total consumption 2663.799kWh 3127.043kWh 5502.412kWh 3836.463kWh 

Average consumption 5.436kWh 6.25kWh 11.116kWh 7.75kWh 

Delivered packages 20355 20630 19635 20035 

Unattended packages 5260 5005 5990 5590 



values and hard time windows. To do this, a service has been 

developed generating several random orders based on the 

actual load by areas of the city of Madrid5. 

- Depots: a location that a vehicle departs from at the beginning 

of its workday and returns to at the end of the workday. Vehicles 

are loaded (for deliveries) or unloaded (for pickups) at depots at 

the start of the route. A depot has open and close times, as 

specified by a hard time-window. Vehicles cannot arrive at a 

depot outside of this time window. In this case, the depots 

correspond to the different number and location of PSHs 

established for each scenario and are also the places where the 

charging of electric vehicles is carried out. 

- Routes: routes that are available for the given vehicle routing 

problem. A route specifies vehicle and driver characteristics; in 

service response, it also represents the path between depots and 

orders. In this case, the properties that can be specified are start 

depot, end depot, start and end service times, max order count 

and max total time. The properties have been adjusted to the 

case study, with 50 packages as maximum order count for each 

vehicle and a maximum total time of 7 hours per route. 

B.  Generated Routes 

Once the parameters and restrictions for each of the scenarios 

have been established, the VRP service has been launched, and 

the results have been collected in the database. 

Based on this information, and after the analysis of the raw data, 

the statistical results of each of the scenarios is presented, 

considering variables such as the total distance or average time 

per route and average consumption per vehicle (Table I). 

Screenshots of some of the routes generated and comparisons of 

the route optimization algorithm with the actual operation of the 

postmen are also presented. 

Considering the results of the ROM shown in Table I, it can be 

seen that in the number of routes made and the distance traveled, 

scenario 1 (Fig. 8.), decentralized, with a greater number of PSH 

and therefore more geographic dispersion, is the more efficient. 

Similarly, it can be seen how scenario 4 with a single centralized 

hub is the least efficient in terms of total distance. The 

difference with scenario 3 is precisely due to the location of that 

single hub, minimizing the distance in deliveries to companies 

located on the outskirts of the city. 

The data of delivered and unattended parcels follow the same 

general line, although in this case, the lower number of hubs 

allows better management, favoring scenario 2 by 5% compared 

to scenario 1. The values referring to the route time are similar 

in all the scenarios since they are precisely the limiting factor 

(together with the number of packages per route and the number 

of vehicles available) in the optimization of each of the 

proposed delivery scenarios. 

Optimization of delivery via reduction in the number of routes 

Fig. 6. and Fig. 7. show, as an example of the optimization 

achieved, a comparative between the real distribution of parcels 

                                                           
5http://dev.mobility.deustotech.eu/PostLowCIT/api/EsriSimulacion/Orders

?simEnvios=500 

done by the postmen (Fig. 6) and the results of the proposed 

system (Fig. 7) for Scenario 2, PSH2. 

 

Fig. 6. Distribution of parcels done by real postmen. 

 

Fig. 7. Distribution provided by the optimization system 

 

Fig. 8. Location and first route of the 14 PSHs for scenario 1. 



Table 2. Generated actual distribution networks results applying the greenfield RNM around each PSH location. 

As can be seen, one of the characteristics of the deployed 

optimizer is that it organizes the routes in such a way that close 

distance deliveries are carried out by the same vehicle whenever 

possible. Thanks to this, and compared to the actual execution 

of the postmen, where some routes are dispersed across the map 

(different colors/routes in several areas of the map), the number 

of routes required to serve the same number of packages has 

been reduced by one (7 to 6 routes). 

Fig. 8. shows the distribution and the location of the 14 PSHs 

arranged in scenario 1. Only the first of the routes, out of an 

average total of 35 made in each of the PSHs are shown, to 

facilitate the visualization of its geographical distribution. 

C.  Distribution network 

The PSHs are the starting point for the delivery of parcels and 

the location where electric vehicles are charged. A model of the 

distribution networks arround each PSH has been obtained 

using a greenfield RNM. A summary of their features is 

presented in Table 2. The areas of interest have been classified 

according to two parameters. First, industrial (locations 2, 4, 9 

and 14) and residential areas are diferentiated for the reason that 

industrial areas have a greater number of MV consumers. This 

results in different aggregate demand load profiles.  Secondly, 

distribuition networks in older areas (locations 2, 3, 7 and 8) 

have been built with less capacity margins for its components. 

The last column of Table 2 provides a comparison of the 

capacity margin for the most critical element of the network, 

whose type is indicated in parenthesis. Finally, PSHs 12 and 13 

share the same network since the are located within the same 

area.  

The distribution network obtained for the area corresponding to 

the first location is illustrated in Fig. 9. as an example. Each 

voltage level (LV, MV and HV) has been assigned a different 

color (black, green, and light green). The distribution 

transformers are depicted as a blue diamond. The width of the 

lines and the size of the symbols are increased with the voltage 

level. The HV substations are placed in a real location obtained 

from the ENTSO-E transmission network map [31].  

 

 

 

Fig. 9. Base case distribution network for the area of PSH 1. 

The cost of energy has been approximated as a constant 

parameter dependent on the hour of charging. The values 

assigned for each hour have been obtained from the average for 

2019 of the electric vehicle tariff [32], which has two distinct 

periods valley and peak. The cost of energy supply is obtained 

by multiplying the power consumed by the tariff for that time.   

This is not the same as the variable cost of electricity since it 

includes the socialized costs of the existing network in addition 

to the price of electricity in the pool. However, it should be 

noted that this tariff is oriented to small consumers and parcel 

companies may negotiate bilateral contracts directly with retail 

companies.   

Regarding the electrification cost, an estimate of the capital 

expenditures of charging infrastructure for the year 2020 in 

Germany is provided in [33]. The total investment in charging 

infrastructure increases with power level and consists of four 

main components: hardware, grid connection, planning and 

installation. Grid connection costs covered by the consumer, 

which mainly account for the transformer station, should not be 

mistaken with the reinforcement costs obtained with the 

brownfield model that DSOs face to supply the new demand in 

compliance with the quality of service standards. The study of 

the later is a relevant contribution this paper and is not part of 

the charging infrastructure cost. While slow charging at 3.7 kW 

PSH LV cons. MV cons. 
Ratio  

MV cons. 

Transf. 

centers 

HV/MV 

subst. 

LV lines’ 

length [km] 

MV lines’ 

length [km] 

HV lines’ 

length [km] 
I/Imax (element) 

1 48383 311 0.64% 206 2 137.70 62.46 6.96 0.86 (MV feeder) 

2 60560 532 0.87% 264 2 197.10 89.68 15.64 0.92 (Substation) 

3 51536 289 0.56% 217 2 143.31 58.24 10.31 0.98 (HV feeder) 

4 48902 558 1.13% 208 2 164.43 85.04 8.75 0.86 (MV feeder) 

5 70695 367 0.52% 303 2 206.32 116.17 7.40 0.92 (Substation) 

6 47532 260 0.54% 201 2 135.11 52.75 11.17 0.89 (HV line) 

7 52017 183 0.35% 218 2 145.79 51.08 10.16 0.93 (HV feeder) 

8 47141 327 0.69% 200 2 133.17 48.06 12.48 0.94 (HV feeder) 

9 45125 490 1.07% 187 2 145.47 60.24 4.84 0.88 (MV feeder) 

10 56560 280 0.49% 241 2 160.54 66.67 6.23 0.85 (MV feeder) 

11 5884 44 0.74% 26 1 24.02 7.28 5.86 0.85 (Transf. center) 

12 48766 260 0.53% 206 2 138.13 58.49 12.42 0.85 (MV feeder) 

13 48766 260 0.53% 206 2 138.13 58.49 12.42 0.85 (MV feeder) 

14 58686 587 0.99% 250 2 200.75 95.91 11.00 0.94 (Substation) 



and quick charging at 22 kW run with AC voltage, DC fast 

charging at 50kW requires a rectifier increasing hardware cost. 

Thus, the net costs of a DC fast charging station ascent to 

24000€, which is significantly higher than the 1700€ investment 

required for a 3.7 kW smart box or the 3750€, for a 22 kW 

charging station. Besides, the charging stations reviewed in [33] 

are equipped with smart metering, so no supplementary costs 

are considered to enable intelligent valley filling charging 

strategies. 

The emissions from the electrified fleet for each scenario is 

estimated taking into account the average of emission factor of 

the Spanish generation mix (0.17 tCO2eq/MWh in 2019) [34]. 

For the previous fleet of vehicles, an emission rate for the diesel 

vans of 140 gCO2/km is considered [35]. 

V.  RESULTS 

In this section, the results of the case studies presented in section 

IV are analyzed. First, a sensitivity analysis is performed to 

quantify the impact of several decision variables on the 

distribution network. Then, the results are summarized in Table 

3 which provides the basis for an aggregated decision-making 

multicriteria optimization combining routing parameters, 

environmental impacts, and costs. For the base case scenario, it 

has been considered that the recharge begins at 10pm (peak 

hours) and is carried out with and AC 22kW quick charger.      

A.  Sensitivities 

i) Charging profile:  

The sensitivity analysis for the charging profile, shown in Fig. 

10, indicates that applying smart charging strategies to fill the 

valley reduces the necessity of reinforcements in the distribution 

networks. Compared to peak charging, these intelligent 

strategies reduce the simultaneity factor, especially in fast 

charging cases. The simultaneity factor is considered here as the 

probability of vehicles charging at the same time during a 

specific time window. For instance, the simultaneity factor for 

peak charging where all vehicles start charging at the same time 

when they arrive to the depot is 1. Therefore, lower values of 

the simultaneity factor imply a lesser amount of stress on the 

grid. In addition, at off-peak hours the components of 

distribution network have a greater margin over their capacity 

limits, allowing for more demand to be connected. 

In the more decentralized scenarios (scenarios 1 and 2), as there 

are no investments in reinforcements, the effect of reducing 

incremental losses may not be sufficient to compensate the 

additional cost of the smart charging infrastructure. However, 

when considering a single centralized operations hub, the effect 

is more noticeable as it eliminates the need of reinforcements to 

accommodate the 500 electric vehicles. Besides, valley 

charging provides savings in the electricity bill because the cost 

of energy supply is much lower during off-peak hours.  

  

  

 
Fig. 10. Dependence of distribution network incremental costs with 

charging strategies for each scenario.  

ii) Number of vehicles: 

The number of vehicles is directly related with the increment on 

demand and therefore, with the necessity of reinforcements in 

the network. For the base case, there are only reinforcements in 

the most centralized scenario. Fig. 11 depicts a comparison 

between locations 1 and 2 as a function of the number of electric 

vehicles. They follow a similar trend when new electric vehicles 

are connected to the grid. However, incremental costs in the 

network at location 2 are slightly higher because it was defined 

as an industrial area, with a greater number of MV consumers, 

and has older infrastructure, implying that actual components 

are closer to its thermal limits.    

 
Fig. 11. Dependence of distribution network incremental costs with the 

number of electric vehicles at locations 1 and 2.  

iii) Charging power: 

The assessment of the incremental costs of the distribution 

network with the power of charging  (Fig. 12) provides similar 

results to those of the number of vehicles. This holds for slow 

and quick charging. However, when comparing the aggregated 

investments in scenarios 2 and 3a or 3b, the investments in the 

latter centralized scenarios are lower. This may sound 



counterintuitive, but when analyzing only one area, the 

investments increase in steps as the capacity or quality of supply 

limits are surpassed and an additional element has to be 

installed. This was analyzed previously in Fig. 11. Therefore, 

the individual percentual increments in each of the 5 areas in 

scenario 2 are lower, but their aggregated cost is greater.  

 
Fig. 12. Dependence of distribution network incremental costs with 

charging power level for each scenario. 

Moreover, the costs in scenario 3a, where the PSH is located in 

an older industrial neighborhood in the outskirts, are higher than 

in the other centralized scenario 3b. As mentioned earlier, the 

initial MV network in scenario 3a is more congested, but the 

difference between both increases with a higher power level. 

Furthermore, the electrification cost also raises when the power 

level increases. The installation cost for AC charging 

infrastructure, both slow and quick charging, is lower than DC 

fast charging. 

B.  Multi criteria optimization: 

The results from the simulations for all the scenarios carried out 

with the methodology explained in section III are summarized 

in Table 3, which provides the foundations for a multi-criteria 

optimization for the different stakeholders involved in the 

aggregated decision-making process in which transportation 

and electrical network parameters are closely related. 

The greater dispersion of the depots decreases the average 

distance covered daily by each vehicle. This reduces the energy 

consumption and, as a result, the cost of energy supply. 

Moreover, the results in Table 3 reveal that required 

reinforcements on the distribution network to accommodate the 

new electric vehicles could be avoided if the operation is 

decentralized (Scenario 1). Furthermore, the relative CO2 

emissions reduction achieved by substituting the current fleet 

with electric vehicles (66.15%) could be enhanced by 

decentralized operation because it results in shorter delivery 

routes. For instance, as shown in Table 3, the estimated absolute 

emissions from electric vehicles for Scenario 1 (decentralized)

Table 3. Results of the case study (base case highlighted in grey).

                                                           
6 This column shows the increase in energy losses for each scenario respect the base case with no electric vehicles. The negative value in this cell indicates that 

energy losses in this particular scenario are lower than in the base case. Typically, higher load in the system would increase energy losses, but network 
reinforcements can push in the opposite direction, reducing impedances and thus energy losses. In this particular scenario, the decrease due to the reinforcements 

is higher than the increase derived from the load increase. 

  
 Routing parameters Environmental Costs 

Power Profile Scenario 
Average 

Distance [km] 

Average Energy 

Consumed [kWh] 

Emissions from 

EVs [gCO2] 

Energy supply 

[€/day] 

Charging 

infrastructure [€] 

Reinforcements 

in DN [€] 

Inc. energy 

losses [€] 

3
.7

 k
W

 (
S

lo
w

) 

P
e
a

k
 

1 19.50 5.436 924 300.43 850000 0 3342 

2 22.43 6.254 1063 327.58 850000 0 3777 

3a 39.87 11.116 1890 488.54 850000 0 13076 

3b 27.80 7.750 1318 377.40 850000 0 3330 

V
a

ll
ey

 1 19.50 5.436 924 144.46 850000 0 1483 

2 22.43 6.254 1063 166.20 850000 0 2019 

3a 39.87 11.116 1890 205.96 850000 0 8250 

3b 27.80 7.750 1318 295.41 850000 0 1660 

2
2
 k

W
 (

Q
u

ic
k

) 

P
e
a

k
 

1 19.50 5.436 924 361.63 1875000 0 9599 

2 22.43 6.254 1063 416.05 1875000 0 15996 

3a 39.87 11.116 1890 739.49 1875000 121624 7117 

3b 27.80 7.750 1318 515.57 1875000 118821 3610 

V
a

ll
ey

 1 19.50 5.436 924 144.46 1875000 0 3826 

2 22.43 6.254 1063 166.20 1875000 0 7181 

3a 39.87 11.116 1890 205.96 1875000 0 17244 

3b 27.80 7.750 1318 295.41 1875000 0 4511 

5
0
 k

W
 (

D
C

 F
a

st
) 

P
e
a

k
 

1 19.50 5.436 924 361.63 12000000 0 24045 

2 22.43 6.254 1063 416.05 12000000 1045001 31281 

3a 39.87 11.116 1890 739.49 12000000 583603 -86696 

3b 27.80 7.750 1318 515.57 12000000 168248 2320 

V
a

ll
ey

 1 19.50 5.436 924 144.46 12000000 0 10967 

2 22.43 6.254 1063 166.20 12000000 0 18544 

3a 39.87 11.116 1890 205.96 12000000 115878 25417 

3b 27.80 7.750 1318 295.41 12000000 117593 20852 



are 51% lower than in Scenario 3a (centralized). Nevertheless, 

electrifying longer routes from a current fleet would increase the 

savings on fuel costs, given that electricity supply costs are 

lower than fuel costs. 

On the other hand, the addition of a higher number of vehicles 

connected to the same node requires greater investments in the 

distribution network for that particular area as shown in Fig. 11. 

However, when considering the total cost of the different areas 

of interest, they may be higher since the costs increase in steps. 

For instance, it was previously discussed that the additional 

costs for DC fast charging in the centralized Scenarios 3a and 

3b are lower than in Scenario 2. In addition, a greater charging 

capacity also increases charging infrastructure costs, especially 

in the case of DC fast charging. 

Finally, the charging profile is the key driver of the cost of 

energy supply, as the tariff has two distinct regulatory periods, 

being cheaper to recharge during off-peak hours. Therefore, 

smart charging strategies to fill in the valley result in lower 

electrical energy costs. Furthermore, since capacity margins of 

the existing components are higher during valley hours, both 

incremental costs in energy losses and reinforcements in the 

distribution network are also reduced. 

VI.  CONCLUSIONS 

This paper proposes a methodology that combines routing 

optimization and large-scale distribution planning algorithms, 

to perform a realistic assessment of the electrification of parcels’ 

transportation following the actual decision patterns of the 

stakeholders.  

The obtained results reflect that, for the considered activity level 

of a parcel delivery company in the city of Madrid, a more 

distributed layout is better from both a routing and electrical 

perspective. The impact on the grid is minimal since, with a 

distributed layout, no reinforcements would be required to 

supply the newly added electric vehicles. In addition, delivery 

vans would cover the shortest routes as the PSH is closer to the 

delivery locations. Therefore, by lowering the average energy 

consumption both investments in electric vehicles (fewer 

capacity requirements for the batteries) and the energy supply 

cost for the parcel delivery company would be reduced. Even in 

centralized scenarios, current battery technology provides 

sufficient capacity for daily operation. Moreover, from an 

environmental point of view the relative emissions reduction 

from electrifying the fleet would be complemented with lower 

absolute CO2 emissions in decentralized operation since 

vehicles cover shorter routes. On the other hand, centralized 

operation could result in lower logistics and land expenses, not 

considered in this paper. In addition, higher savings in fuel costs 

from electrifying longer routes could ease the investments in 

electrification. 

The analysis of charging strategies shows that, when the 

charging station is capable of smart charging, it is always better 

to charge during valley hours because energy supply costs are 

lower. In addition, besides increments in energy losses (which 

are also lower when compared to peak charging), there are no 

additional costs for the DSO since no network reinforcements 

are needed for AC charging in valley. Thus, price signals or 

other incentives could be used to encourage smart valley 

charging in order to reduce congestion in the grid. 

Regarding the power of charging stations, 3.7 kW slow charging 

requires the lowest investments in charging infrastructure. Since 

no delivery takes place during the night, vehicles stay for a long 

period at the PSH and low charging times are not critical. 

Therefore, DC fast charging seems to be better suited for 

charging stations in transit due to is high infrastructure cost. 

However, 22 kW quick charging could provide a more flexible 

alternative for a future increment of the capacity of the vehicles 

(to cover longer routes, extending the operating hours).  

In the analyzed case studies, the most relevant component of the 

reinforcements in the distribution networks were the additional 

MV feeders required to supply the new loads when the capacity 

of the existing ones was surpassed. The hosting capacity for the 

modelled grids appears to be between 5 and 11MW or 11 and 

25MW for peak and valley charging respectively, but a more 

detailed specific analysis could be carried out in future studies. 

Finally, further integration between the ROM and RNM could 

be developed in future research, specially, creating a feedback 

loop to adapt the scenarios and locations of PSHs with the 

routing and electrical results obtained. 

VII.  DATA AVAILABILITY 

Datasets related to this article can be found in [35, 36] and are 

linked to this paper. [36] contains the orders (pickup and 

delivery locations for postal services) in JSON format, inputted 

to the route optimization model. [37] contains the synthetic 

distribution networks in MATPOWER format, which have been 

used in this paper to model the distribution networks around 

each PSH, and analyzed with the Brownfield Reference 

Network Model to estimate the required reinforcements in the 

distribution system. 
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